Hall Ticket Number:

Code No.: 32011TS AS

Max. Marks: 35

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (Civil Engg.) III Year II-Semester Advanced Supplementary Examinations, June/July-2017

Finishing School-IV : Technical Skills

Time: 1½ hours

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A $(5 \times 2 = 10 Marks)$

 Explain what happens when the following code is executed x = 0: 0.1π: 2π; y = cos(x); plot(x, y,'-xg');

2. Explain what happens when the following code is executed x = 0:5
y = [15,10,9,6,2,0]; polyfit(x, y, 2);

- Explain what happens when the following code is executed y = sin(3*x) diff(y,3)
- 4. Compute the output of the following code f = @(x) exp(3*x)quad(f,0,1)
- 5. Explain what happens when the following code is executed x = 0:0.2:2; y = x.^2; trapz(x,y)

Part-B $(5 \times 5 = 25 Marks)$

6. a) What is the output of the following lines of code is executed

 $x = 0:0.01\pi:2\pi;$ y = sin(2 * x);plot(x, y, '-*r');

- b) Write a MATLAB program to make plots of sin 4x, cos x and cos 3x in the same figure with the [3] following specifications:
 - i) range of values of x is from 0 to 2π in steps of 0.01π
 - ii) title for the figure and labels for x and y axes.
 - iii) the plots of $\cos 4x$, $\sin x$ and $\cos 3x$ are shown in blue, green and red colors respectively.
- 7. a) Compute the output of the following lines of code

x = 0:5y = [15,10,9,6,2,0];newx = interp1(x, y, 1.5); $fprintf(1,' newx = <math>\% f \setminus n', newx);$

b) Consider the x and y values shown in the table below. Write a MATLAB program to use to [3] linear interpolation to approximate y_{new} values for x_{new} values evenly spaced between 1 and 10 at intervals of 0.2.

X	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	
У	2.3	4.5	6.0	8.2	11.1	14.0	16.7	19.8	20.0	22.0	

[2]

[2]

Code No.: 32011 TS AS

[2]

[3]

[2]

[3]

[5]

- 9. a) Explain what is an elliptic partial differential equation, citing a suitable example. [2]
 - b) Write a MATLAB program to solve the partial differential equation $\pi^2 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject the [3] following conditions: $u(x,0) = \sin(\pi x)$; u(0,t) = 0 and $\pi e^{-t} + \frac{\partial u}{\partial x}(1,t) = 0$
- 10. a) Citing a suitable example, explain how numerical integration is carried out using MATLAB functions
 - b) Write a MATLAB program to compute $\int_{1}^{3} (2x^{2} + 4x + 5) dx$ by trapezoidal rule . [3]
- 11. a) Write a MATLAB program to make plots of sin(x) and cos(x) in the same figure with the [2] following specifications:
 - i) range of values of x is from 0 to 2π in steps of 0.1π
 - ii) provide title for the figure and labels for x and y axes.
 - iii) plot of sin(x) to be in blue color using a solid line
 - iv) plot of cos(x) to be in red color using a dashed line
 - b) Write a MATLAB program to fit a second order curve for the following data

x	0	1	2	3	4	5
y.	15	10	9	6	2	0

12. Answer any two of the questions:

- 15 --

- a) Write a MATLAB program to solve the third order ODE $\frac{\partial y}{\partial x} + 4y = e^{-t}$ subject to the condition y(0) = 1
- b) Explain how a partial differential equation is solved using a suitable MATLAB function.
- c) Write a MATLAB program to compute $\int_0^2 (x^3 + 4x 3) dx$ by Simpson's rule.

::2::