

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (Civil Engg.) MI Year M-Semester Advanced Supplementary Examinations, June/July-2017

Finishing School-IV: Technical Skills
Time: $11 / 2$ hours
Max. Marks: 35

Note: Answer ALL questions in Part-A and any FIVE from Part-B

$$
\text { Part-A }(5 \times 2=10 \mathrm{Marks})
$$

1. Explain what happens when the following code is executed
$x=0: 0.1 \pi: 2 \pi$;
$y=\cos (x)$;
$p \operatorname{lot}\left(x, y,-x g^{\prime}\right)$;
2. Explain what happens when the following code is executed
$x=0: 5$
$y=[15,10,9,6,2,0]$;
polyfit ($x, y, 2$);
3. Explain what happens when the following code is executed
$y=\sin \left(3^{*} x\right)$
diff($(, 3)$
4. Compute the output of the following code
$f=@(x) \exp \left(3^{*} x\right)$
quad($(, 0,1)$
5. Explain what happens when the following code is executed
$x=0: 0.2: 2$;
$y=x$.^2;
$\operatorname{trapz}(x, y)$

$$
\text { Part-B }(5 \times 5=25 \text { Marks })
$$

6. a) What is the output of the following lines of code is executed
$x=0: 0.01 \pi: 2 \pi$;
$y=\sin (2 * x)$;
plot $\left(x, y,-* r^{\prime}\right)$;
b) Write a MATLAB program to make plots of $\sin 4 x, \cos x$ and $\cos 3 x$ in the same figure with the following specifications:
i) range of values of x is from 0 to 2π in steps of 0.01π
ii) title for the figure and labels for x and y axes.
iii) the plots of $\cos 4 x, \sin x$ and $\cos 3 x$ are shown in blue, green and red colors respectively.
7. a) Compute the output of the following lines of code
$x=0: 5$
$y=[15,10,9,6,2,0] ;$
new $x=\operatorname{interp} 1(x, y, 1.5)$;
fprintf(1,' newx $\left.=\% f \backslash n^{\prime}, n e w x\right)$;
b) Consider the x and y values shown in the table below. Write a MATLAB program to use to linear interpolation to approximate $y_{\text {new }}$ values for $x_{\text {new }}$ values evenly spaced between 1 and 10 at intervals of 0.2 .

x	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0
y	2.3	4.5	6.0	8.2	11.1	14.0	16.7	19.8	20.0	22.0

8. a) Citing an example, explain the utility of the ode 45 function in MATLAB
b) Write a MATLAB program to solve $\frac{d y}{d t}=3 t^{2}$ numerically using the initial condition $y(-1)=-1$ and to plot t vs y.
9. a) Explain what is an elliptic partial differential equation, citing a suitable example.
b) Write a MATLAB program to solve the partial differential equation $\pi^{2} \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$ subject the following conditions:
$u(x, 0)=\sin (\pi x) \quad ; u(0, t)=0$ and $\pi e^{-t}+\frac{\partial u}{\partial x}(1, t)=0$
10. a) Citing a suitable example, explain how numerical integration is carried out using MATLAB functions
b) Write a MATLAB program to compute $\int_{1}^{3}\left(2 x^{2}+4 x+5\right) d x$ by trapezoidal rule .
b)
11. a) Write a MATLAB program to make plots of $\sin (x)$ and $\cos (x)$ in the same figure with the following specifications:
i) range of values of x is from 0 to 2π in steps of 0.1π
ii) provide title for the figure and labels for x and y axes.
iii) plot of $\sin (x)$ to be in blue color using a solid line
iv) plot of $\cos (x)$ to be in red color using a dashed line
b) Write a MATLAB program to fit a second order curve for the following data

x	0	1	2	3	4	5
y	15	10	9	6	2	0

12. Answer any two of the questions:
a) Write a MATLAB program to solve the third order ODE $\frac{\partial y}{\partial x}+4 y=e^{-t}$. subject to the condition $y(0)=1$
b) Explain how a partial differential equation is solved using a suitable MATLAB function.
c) Write a MATLAB program to compute $\int_{0}^{2}\left(x^{3}+4 x-3\right) d x$ by Simpson's rule.
